
Exploring Robustness in Group Key Agreement
�

Yair Amir
�

YongdaeKim
�

CristinaNita-Rotaru
�

JohnSchultz
�

JonathanStanton
�

GeneTsudik
�

Abstract

Securegroupcommunicationis crucial for building
distributed applicationsthat work in dynamicenvi-
ronmentsand communicateover unsecured networks
(e.g. theInternet).Key agreementis a critical part of
providing securityservicesfor group communication
systems.Most of the current contributory key agree-
mentprotocols are not designedto tolerate failures
and membership changes during execution. In par-
ticular, nestedor cascadedgroup membership events
(such aspartitions)are notaccommodated.

In this paperwe presentthe first robust contribu-
tory key agreementprotocolsresilientto anysequence
of eventswhile preservingthe group communication
membershipandorderingguarantees.

1 Introduction

Theexplosive growth of the Internethasincreased
boththenumberandthepopularityof applicationsthat
requireareliablegroupcommunicationinfrastructure,
suchasvoice-andvideo-conferencing, white-boards,
distributed simulations,and replicatedservers of all

�
This work was supportedin part by a grant from the Na-

tional Security Agency under the LUCITE program and by
grantF30602-00-2-0526from The DefenseAdvancedResearch
ProjectsAgency.�

Departmentof ComputerScience,JohnsHopkinsUniversity,
Baltimore, MD 21218,USA. Email: � yairamir, crisn, jschultz,
jonathan� @cs.jhu.edu�

ComputerNetworksDivision,USCInformationSciencesIn-
stitute, Marina Del Ray, CA 90292-6695,USA. Email: yong-
daek@isi.edu	

Information and Computer Science Department, Univer-
sity of California, Irvine Irvine, CA 92697-3425,USA. Email:
gts@ics.uci.edu

types.

Securegroup communicationis crucial for build-
ing distributedapplicationsthatwork in dynamicnet-
work environmentsand communicateover insecure
networks suchas the global Internet. Key manage-
ment is the basefor providing commonsecurityser-
vices (datasecrecy, authenticationand integrity) for
groupcommunication.Thereareseveral approaches
to groupkey management.

Oneapproachrelieson a single,centralizedentity,
to generatekeys anddistribute themto thegroup. In
this case,a so-calledkey server maintainslong-term
sharedkeys with eachgroupmemberin order to en-
able securetwo-party communicationfor the actual
key distribution. A specificform of this solutionuses
a fixed trustedthird party (TTP) as the key server.
This approachhastwo problems:1) theTTP mustbe
constantlyavailableand2) a TTP mustexist in every
possiblesubsetof a groupin orderto supportcontin-
uedoperationin theeventof network partitions.The
first problem can be addressedwith fault-tolerance
and replicationtechniques.The second,however, is
impossibleto solve in a scalableand efficient man-
ner. We note, however, that centralizedapproaches
work well in a one-to-many multicastscenariosince
a TTP (or a set thereof)placedat, or very near, the
sourceof communicationcansupportcontinuedoper-
ationwithin anarbitrarypartitionaslongasit includes
thesource.(Typically, one-to-many settingsonly aim
to offer continuedoperationwithin a singlepartition
that includesthe source;whereas,many-to-many en-
vironmentsmustoffer thesamein anarbitrarynumber
of partitions.)

Another key managementapproachinvolves dy-
namicallyselecting– in somedeterministicmanner–
a groupmemberchargedwith the taskof generating

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Exploring Robustness in Group Key Agreement

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Johns Hopkins University,Department of Computer Science,3400 North
Charles Street,Baltimore,MD,21218-2685

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Secure group communication is crucial for building distributed applications that work in dynamic
environments and communicate over unsecured networks (e.g. the Internet). Key agreement is a critical
part of providing security services for group communication systems. Most of the current contributory key
agreement protocols are not designed to tolerate failures and membership changes during execution. In
particular, nested or cascaded group membership events (such as partitions) are not accommodated. In
this paper we present the first robust contributory key agreement protocols resilient to any sequence of
events while preserving the group communication membership and ordering guarantees.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

keys and distributing them to other group members.
This approachis robustandmoreamenableto many-
to-many typeof groupcommunicationsinceany par-
tition cancontinueoperationby electinga temporary
key server. Thedrawbackhereis that,asin theTTP
case,a key server mustestablishlong-termpairwise
securechannelswith all currentgroupmembersin or-
der to distributegroupkeys. Consequently, eachtime
a new key server comesinto play, significant costs
must be incurredto set up thesechannels. Another
disadvantage,againasin theTTP case,is thereliance
ona singleentity to generategood(i.e.,cryptographi-
cally strong,random)keys.

In contrastto theabove, contributory key manage-
mentaskseachgroupmemberto contribute an equal
shareto thecommongroupkey (computedasa func-
tion of all members’contributions). This approach
avoidstheproblemswith thesinglepointsof trustand
failure. Moreover, somecontributory methodsdo not
requirethe establishmentof pairwisesecretchannels
amonggroup members. However, currentcontribu-
tory key agreement1 protocolsarenotdesignedto tol-
eratefailuresandgroupmembershipchangesduring
execution.In particular, nested(or cascaded)failures,
partitionsand other group eventsare not accommo-
dated. This is not surprisingsincemostmulti-round
cryptographicprotocolsdo not offer built-in robust-
nesswith the notableexceptionof protocolsfor fair
exchange[1].

Themaingoalof this paperis to demonstratehow
provably secure,multi-round group key agreement
protocolscanbe combinedwith reliablegroupcom-
municationservicesto obtainprovably fault-tolerant
group key agreementsolutions. More precisely, we
presenttwo robust contributory key agreementpro-
tocolswhich areresilientto any sequence(even cas-
caded)of eventswhile preservinggroupcommunica-
tionsmembershipandorderingguarantees.Both pro-
tocols are basedon Cliques GDH contributory key
agreementthat generalizeson the two-party Diffie-
Hellman[2] key exchange.Our first protocolutilizes
membershipinformationprovidedby thegroupcom-
municationsystemin order to appropriatelyre-start
CliquesGDH key agreementin anagreed-uponman-

1Weusetheterm”agreement,” asopposedto ”distribution”, to
emphasizethecontributorynatureof thekey management.

nerevery time thegroupchanges.Thesecondproto-
col optimizestheperformanceof commoncasesat the
costof amoresophisticatedprotocolstatemachine.

The restof thepaperis organizedasfollows. The
remainderof this sectionfocusesonourmotivationin
pursuingthis work andoverviews relatedwork. We
thenpresentSecureSpread,asecuregroupcommuni-
cationsystemwhichutilizesourkey agreementproto-
cols. Thetwo subsequentsectionspresenttwo robust
key agreementprotocolsandprove their correctness.
Finally, we summarizeourwork anddiscusssomefu-
turedirections.

1.1 Motivation

As mentionedearlier, a prominentchallengeen-
counteredin securinggroupcommunicationis in de-
velopingrobust, reliableandfault-tolerantgroupkey
managementmechanismsthat perform well in prac-
tice. While the motivation for securityservices(key
management,in particular)in a tightly-coupledgroup
communicationsettingis fairly intuitive, theneedfor
reliable group communicationservicesby the group
key managementis lessobvious. We claim that re-
liable and sequencedmessagedelivery is important
(andeven crucial) for cryptographicgroupprotocols.
Asynchronousnetwork behavior mustbe handledby
the underlying group communicationlayer, which
promptstheneedfor a highly reliablegroupcommu-
nicationservice.

This dependenceis both natural and mutual. It
is naturalsincesecuredynamicpeergroupsalways
require certain communicationguarantees. (Best-
effort datagramserviceis not usuallya viableoption,
whereas,it may suffice for one-to-many type groups
encounteredin Internetmulticastsettings.) It is mu-
tual sincereliablegroupcommunicationsystemsare
of limited utility in opennetworkswithout strongse-
curity servicesandguarantees.Thus,we have inter-
dependenceamongreliablegroupcommunicationand
groupkey managementprotocols.

Cryptographicprotocols designersare primarily
concernedwith securityandtypically assumethatpro-
tocol robustnessis handledby the particularapplica-
tion or by theunderlyingcommunicationlayer. Thisis
reasonablein two-partyprotocolswherecommunica-
tion failuresarerelatively easyto handleandrecover

2

from. Thepicturechangesdramaticallyin grouppro-
tocolswherethebehavior modelis richer.

Multi-roundgroupkey managementprotocolscan-
not be expectedto run to completion without be-
ing possiblyinterruptedby variousgroupmembership
events: joins, leaves, disconnects,partitions,merges
or any combinationthereof.

Our previouswork [3] focusedon theperformance
evaluationin the scenariowith no network faults or
cascadedeventsand provided a good insight of the
overallcostof highsecurityin agroupcommunication
environment.Thepresentwork goesinto thedetailsof
acompletesolutionthathandleseverypossiblecombi-
nationof groupmembershipevents.Thecontribution
of this paper, therefore,is the design,and the proof
of correctnessof, a robustcontributory key agreement
algorithm.

1.2 Related Work

In this sectionwe considerrelatedwork in two ar-
eas:groupkey managementandreliablegroupcom-
munication.

1.2.1 Group Key Management

Cryptographictechniquesfor securingall types of
multicast-or group-basedprotocolsrequireall parties
to sharea commonkey. This requiresa GroupKey
Management(GKM) protocolto provide methodsfor
generatingnew groupkeysandupdatingexistingkeys.
GKM protocolsgenerallyfall into two classes:

 Protocolsdesignedfor large-scale(e.g.,IP Multi-
cast)applicationswith a one-to-many communi-
cationparadigmandrelatively weaksecurityre-
quirements.

 Protocols designedto support tightly-coupled
dynamic peer groups with modest scalability
requirements,a many-to-many communication
paradigmandstrongsecurityrequirements.

GKM protocolsof thefirst typearebeingdevelopedin
thecontext of IETF/IRTF. Oneexampleis theGroup
Key ManagementProtocol (GKMP) [4] which pro-
videskey disseminationusinga dedicatedgroupcon-
troller. Another is the Multicast Key Management

Protocol (MKMP) [5] which assumesa numberof
trusted “key distributors” exist throughoutthe net-
work. (MKMP providesa way for agroupmemberto
probefor thenearestdistributor in orderto geta copy
of a groupkey.) SomeGKM protocolsleverageoff
particularIP Multicast routing protocols. The Scal-
ableMulticastKey Distribution [6] approachusesthe
CoreBasedTrees[7] multicastroutingprotocolstate
and structureto authorizemembersand disseminate
keys. Althoughit providesanefficient methodof key
dissemination,this methodis limited to domainsthat
useCBT for multicastrouting.

Some key managementapproachestargeting IP
Multicastusehierarchicalkey distribution. For exam-
ple, the Iolus system[8], partitionsthemulticasttree
into subgroups;eachsub-grouphasa differentgroup
key andnodeson the bordersof sub-groupsperform
re-encryptionof multicastdatain realtime. Thework
of [9] andthe Intra-domainGroupKey Management
Protocoladvancethis conceptby allowing eachsub-
groupto bea separatedomainwith independentcon-
trol over whatgroupkeying protocolis used.Another
hierarchicalapproachmakesthegroupkey itself hier-
archical,usuallywith a tree-basedstructure.In [10],
a tree-orientedkey structureallows eachleaf to repre-
sentanumberof nodesandsomemembershipchanges
to only require���������� key changes.

A numberof GKM protocolssupportingabstract
peergroupshave beendevelopedin the last decade
[11], [12], [13], [14], [15], [16], [17]. All, except[17],
extendthe well-known Diffie-Hellmankey exchange
[2] methodto group of � parties. Theseprotocols
vary in degreesof protectionfrom hostileattacksand
in their performancecharacteristics.(For an in-depth
comparison,see[16].) In this paper, we make use
of the CLIQUES toolkit which implements– among
other methods– a suite of protocols,called generic
GroupDiffie-Hellman(GDH). GDH offers contribu-
tory authenticatedgroupkey agreementandhandles
dynamic membershipchanges[15, 16]. The entire
protocolsuitehasbeenproven securewith respectto
bothpassive andactive attacks.

1.2.2 Reliable Group Communication

Reliablegroupcommunicationin LAN environments
have a well-developed history beginning with ISIS

3

[18], and more recentsystemssuchas Transis[19],
Horus[20], Totem[21], andRMP[22]. Thesesystems
exploredseveral differentmodelsof GroupCommu-
nicationsuchasVirtual Synchrony [23] andExtended
Virtual Synchrony [24]. More recentwork in thisarea
focuseson scaling group membershipto wide-area
networks[25], [26].

Researchin securinggroupcommunicationis fairly
new. Theonly actualimplementationsof groupcom-
municationsystemsthatfocusonsecurity(in addition
to ours), are SecureRing[27] project at UCSB, and
the Horus/Ensemblework at Cornell [28]. The Se-
cureRingsystemprotectsa low-level ring protocolby
using cryptographictechniquesto authenticateeach
transmissionof the token andeachdatamessagere-
ceived. The Ensemblesecuritywork is the state-of-
the-art in securereliable group communicationand
addressesproblemsas group keys and re-keying. It
also allows application-dependent trust models and
optimizescertainaspectsof groupkey generationand
distribution protocols. In comparisonwith our ap-
proach,Ensembleusesadifferentgroupkey structure
that is not contributory andprovidesa differentsetof
securityguarantees.

Recent researchon Bimodal-Multicast, Gossip-
basedprotocols [29] and the Spinglasssystemhas
largely focusedon increasingthe scalabilityandsta-
bility of reliable group communicationservicesin
more hostile environments such as wide-areaand
lossynetworks by providing probabilisticguarantees
aboutdelivery, reliability, andmembership.

2 A Secure Group Communication Environ-
ment

The work discussedin this paperhasinvolved in-
tegratingtheSpreadwide-areagroupcommunication
systemwith the group key agreementprotocols in
the CliquesGDH protocol suite. In this sectionwe
overview bothSpreadandCliquestoolkits.

2.1 Spread Toolkit

Spread[30], [31] is agroupcommunicationsystem
for wide andlocal areanetworks. It providesall the
servicesof traditionalgroupcommunicationsystems,
including: unreliable/reliabledelivery, FIFO, causal,

total ordering,and membershipserviceswith strong
semantics.

Spreadcreatesan overlay network that can im-
poseanarbitrarynetwork configuration(suchaspoint-
to-multi-point, tree, ring, tree-with-subgroupsor any
combinationthereof)to adaptthe systemto different
network environments. The Spreadarchitectureal-
lows multiple protocolsto be usedon links both be-
tweenandwithin sites.TheSpreadtoolkit is veryuse-
ful for applicationsthat needtraditional groupcom-
municationservices(suchascausalandtotalordering,
membershipanddelivery guarantees)but alsoneedto
operateoverwide-areanetworks.

Thesystemconsistsof a long-runningdaemonand
a library linked with the application. This architec-
ture hasmany benefits,the most importantfor wide-
areasettingsbeing the ability to pay the minimum
possibleprice for differentcausesof groupmember-
ship changes. A simple join or leave of a process
translatesinto a singlemessage,while a daemondis-
connectionor connectionrequiresa full membership
change.Luckily, thereis a stronginverserelationship
betweenthefrequency of theseeventsandtheircostin
a practicalsystem.Theprocessanddaemonmember-
shipscorrespondto themorecommonmodelof light-
weightandheavy-weightgroups.

Spreadscaleswell with thenumberof groupsused
by theapplicationwithout imposingany overheadon
network routers.Groupnamingandaddressingis not
a sharedresource(as in IP multicastaddressing)but
ratheralargespaceof stringswhichis uniqueto acol-
laborationsession.

The toolkit can supporta large numberof differ-
ent collaborationsessions,eachof which spansthe
Internetbut hasonly a moderatenumberof partici-
pants.Thisisachievedby usingunicastmessagesover
thewide-areanetwork, routing thembetweenSpread
nodeson theoverlaynetwork.

The Spreadsystemprovides two different seman-
tics: ExtendedVirtual Synchrony [24, 32] andView
Synchrony [33]. In this paper, andfor our implemen-
tation we only usethe View Synchrony semanticsof
Spread.

The Spreadtoolkit is availablepublicly andis be-
ing usedby severalorganizationsfor bothresearchand
practicalprojects.Thetoolkit supportscross-platform
applicationsandhasbeenportedto severalUnix plat-

4

formsaswell asWindows andJava environments.

2.2 Cliques Toolkit

Cliques[16, 15, 34] is a cryptographictoolkit pro-
viding key managementservicesfor dynamic peer
groups.Cliquesincludesseveralprotocolsuites:

 GDH: basedon groupextensionsof the 2-party

Diffie-Hellmankey exchange[15, 16]; provides
fully contributory authenticatedkey agreement.
GDH is fairly computation-intensive requiring� ����� cryptographicoperationsupon each key
change.It is, however, bandwidth-efficient.

 CKD: centralizedkey distribution with the key
serverdynamicallychosenfrom amongthegroup
members. A key server usespairwise Diffie-
Hellmankey exchangeto distribute keys. CKD
is comparableto GDH in termsof bothcomputa-
tion andbandwidthcosts.

 TGDH: tree-basedgroup Diffie-Hellman [34];
TGDH is more efficient than the above in
termsof computationasmostoperationsrequire� ���������� cryptographicoperations.(Thesecurity
of TGDH is slightly weaker andit lacksseveral
otherfeaturesnotgermanein this context.)

 BD: a protocol basedon Burmester-Desmedt
[13] variation of group Diffie-Hellman. BD is
computation-efficient requiringconstantnumber
of exponentiationsuponany key change.How-
ever, communicationcostsare significant with
two roundsof � -to-� broadcasts.

All Cliques protocol suitesoffer key independence,
perfectforward secrecy andresistanceto known key
attacks.(See[35, 16] for precisedefinitionsof these
properties.)

In this paper, we focusonly on the GDH protocol
suite within the Cliquestoolkit. As mentionedear-
lier, our specific goal is to take a provably secure,
multi-round group key agreementprotocol (GDH)
and, by combining it with the reliable group com-
municationservice(Spread),obtaina provably fault-
tolerant groupkey agreementsolution.

Cliques GDH API [36] is the implementationof
the GDH protocol suite. It containsGDH crypto-
graphicprimitiveswhile assumingthe existenceof a

reliablecommunicationplatformfor transportingpro-
tocol messages.GDH assignsaspecialrole to thelast
memberto join a group. This role, referredto asthe
groupcontroller, floatsasgroupmembershipchanges.
A groupcontroller is chargedwith initiating key up-
datesfollowing membershipchanges.2 Thefollowing
operationstriggerakey update:

 join: addasinglenew memberto thegroup(han-
dledasaspecialcaseof merge).

 merge: addmultiple membersto thegroup.

 leave: onemembervoluntarily leaves the group
(handledasa specialcaseof partition).

 partition: multiple membersleave thegroupdue
to expulsionor anetwork event.

3 System Model

In this sectionwe specifythefailureandthegroup
communicationmodelsusedin thispaper.

3.1 Failure Model

We considera distributed system, a groupof pro-
cessesexecutingon oneor morecomputersandcoor-
dinatingactionsby exchangingmessages([37]). The
messageexchangeis achievedvia asynchronousmul-
ticastandunicastmessages.Messagescanbelost.

Thesystemis subjectto processcrashesandrecov-
eries. A crashof any componentof theprocesssuch
asthekey-agreementlayer, theCliqueslibrary, or the
groupcommunicationsystemis considereda process
crash.It is assumedthatthecrashof oneof thesecom-
ponentsis detectedby all theothercomponentsandis
treatedasaprocesscrash.

Also, the systemis proneto partitionswhich may
result a network being split into disconnectedsub-
networks. When such a partition is fixed, the dis-
connectedcomponentsmerge into a larger connected
component.While processesare in separatediscon-
nectedcomponentsthey cannotexchangemessages.

Weassumethatmessagecorruptionis maskedby a
lower layer. Byzantinefailuresarenot considered.

2GDH API alsoallows a key refreshoperationwhich maybe
initiatedonly by thecurrentcontroller.

5

Our intrudermodeltakesinto accountonly outside
intruders,bothpassive andactive. An outsideris any-
onewho is not a currentgroupmember. (Of course,
any formerandfuturemember, is anoutsideraccord-
ing to this definition.) We do not considerinsiderat-
tackssinceour threatmodel concentrateson the se-
crecy of group keys and the integrity of the group
membership(i.e., the inability to spoofauthenticated
membership). Consequently, insider attacksare not
relevantbecauseamaliciousinsidercanalwaysreveal
thegroupkey and/orits own privatekey thusallowing
for fraudulentmembershipauthentication.

Passiveoutsiderattacksinvolveeavesdroppingwith
the aim of discovering the groupkey(s). This attack
type hasbeenproven to be computationallyinfeasi-
ble in [15]. Active outsiderattacksinvolve injecting,
deleting,delayingandmodifying protocolmessages.
Someof theseattacksaim to causedenialof service;
we do not addressthesedenialof serviceattacks.At-
tackswith thegoalof impersonatinga groupmember
are preventedby the useof public key-basedsigna-
tures.(All protocolmessagesaresignedby thesender
andverifiedby all receivers.) Other, moresubtle,ac-
tiveattacksaim to introduceaknown (to theattacker)
or old key. Thesearepreventedby thecombineduse
of: timestamps,uniqueprotocol messageidentifiers
andsequencenumbers(identifying theparticularpro-
tocol run) in eachprotocolmessage.

3.2 Group Communication Model

A group communicationsystemusually provides
fundamentalservicessuchasmembershipaswell as
dissemination,reliability and ordering of messages.
The membershipservicenotifies the upper-level ap-
plication with a list of groupmemberseachtime the
groupchanges.This notification-of-membership ser-
vice is calleda view. Every processthat is partof the
groupcommunicationsystemrunsthemembershipal-
gorithm and decideson the new view in agreement
with other connectedprocesses.Oncethis decision
is made,theview is installedandthe upper-level ap-
plicationis notified.

Several different sets of membershipproperties
have beendefinedin the literature. Eachprovides a
differentsetof semanticguaranteesto theapplication,
andareusuallycalledVirtual Synchrony semanticsor

somevariant on the name. The many variationsof
virtual synchrony are all basedon the property that
processesmoving togetherfrom oneview to another
deliver thesamesetof messagesin the former mem-
bershipview.

Some group communicationsystemshave been
built [20], [22], [26] thatapproximatethevirtual syn-
chrony model along with some related properties.
However, eachsystemdoesnotprovidetheexactsame
setof properties,andto the bestof our knowledgea
canonical“V irtual Synchrony model”of anentiresys-
tem hasnot beendefinedin the literature. A good
survey describingmany of the variationsof differ-
entpropertiesfor virtual synchrony semanticscanbe
foundin [38].

Virtual synchrony strengthensthe sharedstateof
thesystemby delivering messagesin thesamemem-
bershipas they were sent in. This enablesthe use
of a sharedkey to encryptdata,sincethe receiver is
guaranteedto have thesamemembershipview asthe
senderandthereforethe samekey (ignoring for now
someconstraintson rekeying).

This work assumesthat the groupcommunication
systemsupportsvirtual synchrony semanticsas they
aredefinedbelow. Thedescriptionof thepropertiesis
largelybasedonthesurvey [38] andthedescriptionof
theExtendedVirtual Synchrony semantics[24].

Note that we define that someevent occurredin
view � at process� if the mostrecentview installed
by process� was � .

1. SelfInclusion
If process� installsa view � then � is a member
of � .

2. Local Monotonicity
If process� installs a view � after installing a
view ��� thenthe identifier ��� of � is greaterthan
theidentifier ��� � of � � .

3. SendingView Delivery
A messageis deliveredin theview thatit wassent
in.

4. DeliveryIntegrity
If process� delivers a message in a view � ,
then there exists a process! that sent in �
causallybefore� delivered .

6

5. No Duplication
A messageis not senttwice. A messageis not
deliveredtwice to thesameprocess.

6. SelfDelivery:
If process� sendsa message , then � delivers
 unlessit crashes.

7. TransitionalSet
1) If two processes� and ! install thesameview,
and ! is includedin � ’s transitionalset for this
view then � ’s previous view wasidenticalto ! ’s
previousview.
2) If two processes� and ! install thesameview,
and ! is includedin � ’s transitionalset for this
view then � is includedin ! ’s transitionalsetfor
this view.

8. Virtual Synchrony
Two processesthat move together3 throughtwo
consecutive views deliver the sameset of mes-
sagesin theformer.

9. CausalDelivery
If message causallyprecedesmessage � , and
botharesentin thesameview, thenany process
! thatdelivers � delivers before � .

10. AgreedDelivery
1) Agreed delivery maintains causal delivery
guarantees.
2) If agreedmessages and � aredeliveredat
process� in this order, and and "� aredeliv-
eredby process! , then � is deliveredby ! after
it delivers .
3) If agreedmessages and "� aredeliveredby
process� in view � in thisorder, and � is deliv-
eredby process! in � beforeatransitionalsignal,
then ! delivers . If messages and � arede-
liveredby process� in view � in this order, and
 � is deliveredby process! in � after a transi-
tionalsignal,then ! delivers if # , thesenderof
 , belongsto ! ’s transitionalset.

11. SafeDelivery
1) Safedelivery maintainsagreeddelivery guar-
antees.

3If process$ installsa view % with process& in its transitional
setandprocess& installs % aswell, then$ and & aresaidto move
together.

2) If process� deliversasafemessage in view
� beforethe transitionalsignal, thenevery pro-
cess! of view � delivers unlessit crashes.If
process� delivers a safemessage in view �
after the transitionalsignal,thenevery process!
thatbelongsto � ’s transitionalsetdelivers af-
ter thetransitionalsignalunlessit crashes.

4 A Basic Robust Algorithm

This sectiondiscussesthedetailsof a basicrobust
key agreementalgorithm. We describethe algorithm
andprove its correctness,i.e. that thealgorithmpre-
serves the virtual synchrony semanticspresentedin
Section3.2. Throughoutthe remainderof the paper,
we meanby thegroupcommunicationsystem(GCS),
a groupcommunicationsystemproviding the virtual
synchrony semantics.

4.1 Algorithm Description

Our basicalgorithmis basedon the CliquesGDH
IKA.2 protocol.Briefly, thisprotocolworksasfollows
(see[15] for acompletedescription):

When an additive group view changehappens(a
join or a merge) the currentgroup controller gener-
atesa new key token by refreshingits contribution to
thegroupkey andpassesthe token to oneof thenew
members.Whenthatnew memberreceivesthis token,
it addsits own contribution andpassesthetokento the
next new member4. Eventually, the tokenreachesthe
lastnew member. This new member, who is slatedto
becomethenew groupcontroller, broadcaststhetoken
to thegroupwithout addingits contribution. Uponre-
ceiving thebroadcasttoken,eachgroupmember(old
andnew) factorsout its contribution andunicaststhe
result(calleda factor-out token)to thenew controller.
The new controllercollectsall the factor-out tokens,
addsits own contribution to eachof them, builds a
list of partialkeysandbroadcaststhelist to thegroup.
Every membercanthenobtainthegroupkey by fac-
toring in its contribution. (This is actuallyperformed
with modularexponentiation.)

4The new memberlist andits orderingis decidedby the un-
derlying groupcommunicationsystem;Spreadin our case.The
actualorderis irrelevantto Cliques.

7

When somemembersleave the group, the group
controller(who, at all times,is themostrecentgroup
member) removes their correspondingpartial keys
from thelist of partialkeys, refresheseachpartialkey
in the list andbroadcaststhe list to the group. Each
remainingmembercanthencomputethesharedkey.

The algorithm describedabove is secureandcor-
rect. Securityis preserved independentlyof any se-
quenceof membershipevents,while correctnessholds
only aslongasnoadditionalgroupview changetakes
placebeforetheprotocolterminates.

To elaborateon this claim, considerwhat happens
if a subtractive (leave or partition)groupmembership
event occurswhile the above protocol is in progress,
for example,while thegroupcontrolleris waiting for
individual unicastsfrom all group members. Since
the Cliques protocol is unaware of the membership
change(which is ”visible” only to thegroupcommu-
nicationsystem),thegroupcontrollerwill notproceed
until all factor-out tokens(including thosefrom for-
mer members)are collected. Therefore,the system
will block. Similar scenariosarealsopossible,e.g.,if
oneof thenew memberscrasheswhile addingits con-
tribution to a groupkey. In this case,the token will
never reachthenew groupcontrollerandtheprotocol
will, onceagain,simplyblock.

If the nestedevent is additive (join or merge), the
protocoloperatescorrectly. In otherwords,it runsto
completionand the nestedevent is handledserially.
(We note,however, that this is not optimalsince,ide-
ally, multiple additive eventscanbe ”chained”effec-
tively reducingbroadcastsandfactor-out tokenimplo-
sions.)

As theabove examplesillustrate,theprotocoldoes
not functioncorrectlyin thefaceof cascadedsubtrac-
tive membershipevents. This behavior is not accept-
able for reliable group communicationsystemsthat
aim to provide a high degreeof robustnessandfault-
tolerance.

A naturalandcorrectsolutionto this problemis as
follows: every time a groupview changeoccurs,the
group deterministicallychoosesa member(say, the
oldest)and runs the CliquesGDH protocolwith the
chosenmemberinitializing it. Notethatthisapproach
coststwicein computationand

� ����� morein thenum-
berof messagesfor thecommoncasewith no cascad-
ing membershipevents. This will be rectified in the

Ap p lication

Rob ust Key Agreem en t

G rou p C om m u n ication
(Virtual Synchrony)

Network

C liq ues
API

D
el

iv
. V

s
M

em
b.

D
el

iv
. M

sg
.

F
lu

sh
_R

eq
ue

st

F
lu

sh
_O

k

S
en

d
m

sg
.

Jo
in

/L
ea

ve

D
el

iv
. S

ec
. M

em
b.

D
el

iv
. M

sg
.

S
ec

_F
lu

sh
_R

eq
ue

st

S
ec

_F
lu

sh
_O

k

S
en

d
m

sg
.

Jo
in

/L
ea

ve

D
el

iv
. S

ec
. T

ra
ns

.
D

el
iv

. V
s

T
ra

ns
.

Figure 1. Secure group comm unication
model

secondprotocoldescribedin Section 5.

Whenthekey-agreementprotocolis integratedwith
a groupcommunicationsystemandvirtual synchrony
semanticsmust be preserved, extra care must be
taken in order to provide all its guaranteesto the
application,including delivery of the correctviews,
transitional signal and transitional sets. We will
elaborateon theseissueslater. Figure 1 presents
the architectureof a securegroup communication
system. The system uses the following types of
messages:Cliques messages(final token msg, par-
tial token msg, key list msg, fact out msg), which
arespecificto thekey agreementprotocol(see[36]);
membershipnotificationmessages(membmsg);tran-
sitional signal messages(transsignalmsg); applica-
tion messages(datamsg);flushmechanismmessages
(flush requestmsg,flush ok msg).

To satisfySendingView Delivery without discard-
ing messagesfrom live and connectedmembers,a
group communicationsystemmust block the send-
ing of messagesbefore the new membershipis in-
stalled. In order to implementSendingView Deliv-
ery thegroupcommunicationsystemsendsamessage
(flush requestmsg)to theclientaskingfor permission
to install a new membershipbeforeactuallycreating
the membership. The applicationrespondswith an
acknowledgementmessage(flush ok msg)which fol-

8

lows all the messagessentby the applicationin the
old view. After sendingthe acknowledgementmes-
sage,theapplicationis not allowed to sendany mes-
sagesuntil thenew view is delivered.In Figure1, the
key-agreementalgorithminteractswith boththeappli-
cationandGCS.Thekey-agreementalgorithmimple-
mentsthe blocking mechanismtransparently. When
aflush requestmsgmessageis receivedfrom GCS,it
is deliveredto the userapplication. Whenthe appli-
cationacknowledgementmessageis receivedit is sent
down to GCS.

A processstartsexecutingthealgorithmby invok-
ing the join primitive of the key-agreementmodule
whichtranslatesinto agroupcommunicationjoin call.
In any stateof the algorithma processcanvoluntar-
ily leave by invoking the leaveprimitive of the key-
agreementmodule which translatesit into a group
communicationleave call.

The specificationof the algorithm is defined in
termsof the following received eventswhich areas-
sociatedwith aspecificgroup:

 Partial Token: a partial token message(par-
tial token msg) was received by the key-
agreementalgorithmfrom theGCS.

 Final Token: a final token message (fi-
nal token msg) was received by the key-
agreementalgorithmfrom theGCS.

 Fact Out: a factorout message(factor out msg)
was received by the key-agreementalgorithm
from theGCS.

 Key List: a key list message(key list msg)was
received by the key-agreementalgorithm from
theGCS.

 User Message: a data application message
(datamsg) was received by the key-agreement
algorithm from the application. The user can
sendmessagesusing broadcastor unicastser-
vices.

 Data Message: a data application message
(datamsg) was received by the key-agreement
algorithmfrom theGCS.

 TransitionalSignal: a transitional signal mes-
sage(transsignalmsg)wasreceivedby thekey-
agreementalgorithmfrom theGCS.

 Membership: a membership message
(membmsg)wasreceivedby thekey-agreement
algorithmfrom theGCS.

 Flush Request: a flush request message
(flush requestmsg) was received by the key-
agreementalgorithmfrom theGCS.

 SecureFlush Request:a flush requestmessage
(flush requestmsg)wasreceivedby theapplica-
tion from thekey-agreementalgorithm.

 SecureFlush Ok: a flush acknowledge mes-
sage(flush ok msg) was received by the key-
agreementalgorithmfrom theapplication.

Note that the sametype of messagecan be associ-
atedwith different events, dependingon the source
of the message. For example, both Flush Request
andSecureFlushRequesteventsareassociatedwith
a flush requestmsgmessage,but in the first casethe
messageis received by the key-agreementalgorithm
from the application, while in the secondcasethe
messageis received by the applicationfrom the key-
agreementalgorithm.

The algorithm consistsof a statemachinehaving
thefollowing states:

 SECURE(S): in this statethe securegroup is
functional, all of the membershave the group
key and can communicatesecurely; the pos-
sible events are DataMessage,User Message,
SecureFlush Ok, Flush Request, and Transi-
tional Signal; getting a SecureFlush Ok with-
out receiving a Flush Requestis illegal; all other
eventsarenotpossible.

 WAIT FOR PARTIAL TOKEN (PT): in
this state the process is waiting for a par-
tial token msg message; the possible events
are Partial Token, Flush Request and Tran-
sitional Signal; UserMessage and Se-
cureFlush Ok are illegal; all other events
arenotpossible.

9

 WAIT FOR FINAL TOKEN (FT): in this state
theprocessis waiting for afinal token msgmes-
sage; the possible events are Final Token,
Flush Request and TransitionalSignal;
User Message and SecureFlushOk are il-
legal; all othereventsarepossible.

 COLLECT FACT OUTS (FO): in this statethe
processis waiting for ')(+* fact out msgmes-
sages(where' is thesizeof thegroup);theonly
possible events are Fact Out, Flush Request,
and TransitionalSignal; UserMessageand Se-
cure FlushOk areillegal;all othereventsarenot
possible.

 WAIT FOR KEY LIST (KL): in this state the
processis waiting for a key list msg message;
the possibleeventsareKey List, Flush Request
and TransitionalSignal; UserMessageand Se-
cure FlushOk areillegal;all othereventsarenot
possible.

 WAIT FOR CASCADING MEMBERSHIP
(CM): in this statetheprocessis waiting for are
membershipand transitional signal messages
(membmsgandtranssignalmsg); the possible
events are Membership, TransitionalSignal,
Data Message (possible only the first time
the processgets in this state), Partial Token,
Final Token, Fact Out and Key List (they cor-
respondto Cliques messagesfrom a previous
instanceof the key agreementprotocol when
cascadedevents happen); UserMessageand
SecureFlushOk areillegal; all othereventsare
notpossible.

A process handles an event by performing two
types of actions. The first type of action is
a group communicationoperation and can be ei-
ther a messagedelivery, or a messagesend such
as unicast, broadcast,or sendflush ok. The sec-
ond type of action is a key agreementspecific
action. This translates into either computation
(clq first member, clq new member, clq updatectx,
clq updatekey, clq factorout, clq merge) or ac-
cess to Cliques state information (clq destroy ctx,
clq get secret,clq new gc, clq next member).These
primitivesarepartof theCliquesGDH API specifica-

tion andaredescribedin detail in [36]. We make use
of a few trivial procedures:

 alone: given a membershipnotification for a
group, which containsa list of all membersof
a group,it returnsTRUE if theprocessinvoking
it is theonly memberof thegroup,FALSE other-
wise;

 ready: givenakey list message,it returnsTRUE
when the list is ready to be broadcast,FALSE
otherwise;

 last: givena Clq ctx anda nameof a process,it
returnsTRUE if theprocessis thelastoneon the
Cliqueslist, FALSE otherwise;

 is in: given an item anda set, returnsTRUE if
thesetcontainstheitem,FALSE otherwise;

 empty: given a set, returnsTRUE if the set is
empty, FALSE otherwise;

 choose: given a set, deterministicallychoosea
memberandreturnsthatmember;

 -: this is thesubtractionoperatorfor sets;

We alsomake useof someimportantdatastructures.
TheMembershipdatastructurekeepsinformationre-
gardingamembershipnotification:

 mb id, theuniqueidentifierof theview;

 mb set, thesetof all themembersof this view;

 vs set, thetransitionalsetassociatedwith thisno-
tification;

 merge set, the membersfrom the new view that
arenot in thetransitionalsetof thenew view;

 leaveset, the membersfrom the previous view
thatarenot in thetransitionalsetof thenew view.

Group communicationsystemsusually provide only
the first threepiecesof informationin a membership
notification. By usingthemembershipsetof thepre-
viousmembershipnotification,andthecurrentmem-
bershipnotification, the merge set and leave set can
becomputedby eitherthekey-agreementalgorithmor

10

New_member shi p. vs_set : = EMPTY
New_member shi p. mb_set : = Me
New_member shi p. mer ge_set : = EMPTY
New_member shi p. l eave_set : = EMPTY
New_member shi p. mb_i d : = 0
Fi r st _t r ansi t i onal : = TRUE
VS_t r ansi t i onal : = FALSE
Fi r st _cascaded_member shi p : = TRUE
Wai t _f or _sec_f l ush_ok : = FALSE
KL_got _f l ush_r eq : = FALSE
Event : = NULL
Cl q_ct x : = NULL
Gr oup_key : = NULL

Figure 3. Initialization of global variab les
theGCS.To simplify thepresentationof thepseudo-
codeof the algorithm we assumethat the merge set
and leavesetareprovided by the groupcommunica-
tion systemas part of the membershipnotification.
The Cliquesctx datastructureis part of the Cliques
GDH API specification,describedin [36].

Every processexecutesthe algorithm for a spe-
cific group and maintainsa list of global variables.
Group name is the name of the group for which
the algorithm is executed,Group key is the shared
secretof the group, while Me is the processexe-
cuting the algorithm. The Eventvariablerepresents
the current event handled. Clq ctx keeps all the
cryptographiccontext requiredby the Cliques API.
New Membership is the new membershipthat will
be delivered, and VS set is used to compute the
transitionalsetdeliveredto theapplicationwith anew
membership.Five global booleanvariablesareused
in order to facilitatethe updatingof the VS setvari-
able, the transitionalsignal delivery, the correctness
of the SecureFlush Ok events and the delivery of
securemembershipnotifications: First transitional,
First cascadedmembership, Wait for secfl ok,
VStransitionalandKL got flush reg.

All global variablesarewritten with capital letter,
while all othervariablesareassumedto belocal. Fig-
ure3 shows theinitialization of theglobalvariables.

A diagramof thestatemachineis presentedin Fig-
ure2 andthecorrespondingpseudo-codein Figures4,
5, 6, 7, 8, 9.

4.2 Correctness Proof

In this sectionwe prove that the basic robust al-
gorithm preserves the Virtual Synchrony Model de-
scribedin Section3.2. Weassumethattheunderlying
groupcommunicationlayerprovidestheVirtual Syn-

Case Event is

Data_Message:

 del i ver (dat a_msg)

User_Message:

 br oadcast (dat a_msg)

Flush_Request:

 Wai t _f or _sec_f l ush_ok : = TRUE
 del i ver (f l ush_r equest _msg)

Secure_Flush_Ok:

 if(Wai t _f or _sec_f l ush_ok)
 Wai t _f or _sec_f l ush_ok : = FALSE
 send_f l ush_ok(Gr oup_name)
 St at e : = WAIT_FOR_CASCADING_MEMBERSHIP
 / * f or opt . Al g. , r epl ace above l i ne wi t h:
 St at e : = WAIT_FOR_MEMBERSHIP * /
 else
 i l l egal , r et ur n an er r or t o t he user
 endif

Transitional_Signal:

 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 VS_t r ansi t i onal : = TRUE

All other events:

 not possi bl e

33

Figure 4. Code executed in SECURE state

case Event is

Final_Token:

 f act _out _msg : = cl q_f act or _out (Cl q_ct x,
 f i nal _t oken_msg)
 new_gc : = cl q_new_gc(Cl q_cxt)
 uni cast (FI FO, f act _out _msg, new_gc)
 KL_got _f l ush_r eq : = FALSE
 St at e : = WAIT_FOR_KEY_LIST

Flush_Request:

 send_f l ush_ok(Gr oup_name)
 St at e : = WAIT_FOR_CASCADING_MEMBERSHIP

Transitional_Signal:

 if(Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 VS_t r ansi t i onal : = TRUE

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

33

Figure 5. Code executed in
WAIT FOR FINAL TOKEN state

11

Flush_Request:
send flush_ok_msg

Flush_Request:
send flush_ok_msg

Flush_Request:
send flush_ok_msg

Trans_Sig& Flush_Request:
send flush_ok_msg

Membership & I’m alone:
destroy old Cliques context
create new Cliques context
update VS set
install memb.

Final_Token: fact out final_token; unicast factor_out_msgto collector

Partial_Token & I’m last:
broadcast final_token_msg

Fact_Out & last factor_out_msg:
update key list,
safely
broadcast key_list_msg

Membersh
ip &

I’m
 not a

lone &
 I’m

 ch
ose

n:

destr
oy o

ld C
liq

ues c
ontext

cre
ate new C

liq
ues c

ontext,

update partia
l to

ke
n

unica
st

partia
l_toke

n_msg
to next

update V
S se

t

Membership &

I’m not alone &

I’m not chosen:

destroy old Cliques context

update VS set
Partial_Token
& I’m not last:
update partial_token,
unicast partial_token_msgto next

Wait for
Cascading
Membership

(CM)

Data_Message
deliver data_msg

Fact_Out &
!last factor_out_msg:
update key list

Join group

Flush_Request:
deliver flush_request_msg

Trans_Sig&
first trans_sig:
deliver
trans_sig_msg

Sec_Flush_Ok:
send
flush_ok_msgCliques_Messages: drop

Wait for
Key_List

(KL)

Wait for
Final_Token

(FT)

Wait for
Partial_Token

(PT)

Collect
Fact_Outs

(FO)

Secure
(S)

Key_List:
extract key;
install memb.

7

1

10

8 19

17

18

2

4

13

5

11

6

12

9

Notes: VS_set is delivered as part of the membership
: All Cliques messages but key_list_msgare sent FIFO
: A process can leave the group in any state

14

3

15

16

5

5 5

5

17

18

Trans_Sig:
deliver
trans_sig_msg

Data_Message:
deliver data_msg

19
User_Message:
send data_msg

Figure 2. Basic algorithm

chrony Model. The Cliquesprotocolwas proven to
becorrectin [16]. We alsonotethat,asevident from
thestatemachinein Figure2, theCliquesGDH pro-
tocol remainsintact, i.e., all of its protocolmessages
aresentanddeliveredin the sameorderasspecified
in [15]. Therefore,thebasicrobustkey agreemental-
gorithm providesthesamesecurityguaranteesasthe
CliquesGDH protocol.

A securemembershipnotification is definedas a
notificationdeliveredby thekey-agreementalgorithm,
and a VS membershipnotification is a notification
deliveredby the groupcommunicationsystemto the
key-agreementalgorithm.A secureview is a view in-
stalledby thekey-agreementalgorithmandaVS view
is a view installedby the groupcommunicationsys-
tem.

Thefollowing two lemmasarestraightforward,but
they aredefinedto clarify theproof. Thefirst lemma

is part of the VS Model provided by the groupcom-
municationsystem.Thesecondlemmais enforcedby
thekey-agreementalgorithm.

Lemma 4.1 EveryVSMembershipeventis preceded
by theprocesssendinga flush ok msg, with theexcep-
tion of thecasewhena processjoins a group. For a
joining process,no flush ok msgmessage is sentand
themembershipnotificationis thefirst message deliv-
eredto it.

Lemma 4.2 A processis not allowed to sendmes-
sages while it is performingthe key agreement(this
is betweenthe time it sendsa flushok message until
thetimeit receivesa secure membershipnotification).

Someusefulobservationscanbemadeaboutmember-
shipnotificationsandapplicationmessages.Thekey-
agreementalgorithmdiscardsVS membershipevents,

12

case Event is

Partial_Token:

 if(! l ast (Cl q_ct x, Me))
 par t i al _t oken_msg : = cl q_updat e_key(Cl q_ct x)
 next _member : = cl q_next _member (Cl q_ct x)
 uni cast (FI FO, par t i al _t oken_msg, next _member)
 St at e : = WAIT_FOR_FINAL_TOKEN
 else
 f i nal _t oken_msg : = par t i al _t oken_msg
 br oadcast (FI FO, f i nal _t oken_msg, Gr oup_name)
 St at e : = COLLECT_FACT_OUTS
 endif

Flush_Request:

 send_f l ush_ok(Gr oup_name)
 St at e : = WAIT_FOR_CASCADING_MEMBERSHIP

Transitional_Signal:

 if(Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 VS_t r ansi t i onal : = TRUE

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

33

Figure 6. Code executed in
WAIT FOR PARTIAL TOKEN state

notevery VS view delivery eventhasa corresponding
secureview delivery event. The securemembership
notificationis built andsavedin theCM state(seeFig-
ure9). For every VS membershipreceived in theCM
state,the list of members,theview identifier andthe
transitionalsetof thenew securemembershipareup-
datedin theNew membershipvariable.Theonly state
in which a membershipfrom the groupcommunica-
tion systemis received,is CM.

User messagesare delivered immediatelyas they
arereceived, they arenot delayedor reordered.The
only stateswhichdeliverusermessagesareSandCM.

Wenow prove thefollowing lemmas.

Lemma 4.3 TheonlystatewhereVSmembershipno-
tifications are receivedby the key-agreementalgo-
rithm is CM.

Proof: By Lemma 4.1, a membershipnotifica-
tion delivery is precededby the processsendinga
flush ok msg message,unless the processis join-
ing. By the algorithm, immediatelyafter sendinga
flush ok msgmessage,the processtransitionsto the

case Event is

Key_List:

 if(! VS_t r ansi t i onal)
 Cl q_ct x : = cl q_updat e_ct x(Cl q_ct x,
 key_l i st _msg)
 Gr oup_Key : = cl q_get _secr et (Cl q_ct x)
 New_memb_msg. vs_set : = Vs_set
 del i ver (New_memb_msg)
 Fi r st _t r ansi t i onal : = TRUE
 Fi r st _cascaded_member shi p : = TRUE
 St at e : = SECURE
 if(KL_got _f l ush_r eq)
 Wai t _f or _sec_f l ush_ok : = TRUE
 del i ver (f l ush_r equest _msg)
 endif
 endif

Flush_Request:

 if(VS_t r ansi t i onal)
 send_f l ush_ok(Gr oup_name)
 St at e : = WAIT_FOR_CASCADING_MEMBERSHIP
 endif
 KL_got _f l ush_r eq : = TRUE

Transitional_Signal:

 if(Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 if(KL_got _f l ush_r eq)
 send_f l ush_ok(Gr oup_name)
 St at e : = WAIT_FOR_CASCADING_MEMBERSHIP
 endif
 VS_t r ansi t i onal : = TRUE

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

33

Figure 7. Code executed in
WAIT FOR KEY LIST state

13

case Event is

Fact_out:

 key_l i st _msg : = cl q_mer ge(Cl q_ct x,
 f act _out _msg, key_l i st _msg)
 if(r eady(key_l i st _msg))
 br oadcast (SAFE, key_l i st _msg, Gr oup_name)
 KL_got _f l ush_r eq : = FALSE
 St at e : = WAIT_FOR_KEY_LIST
 endif

Flush_Request:

 send_f l ush_ok(Gr oup_name)
 St at e : = WAIT_FOR_CASCADING_MEMBERSHIP

Transitional_Signal:

 if(Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 VS_t r ansi t i onal : = TRUE

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

33

Figure 8. Code executed in COL-
LECT FACT OUTS state

CM stateanddoesnot leave theCM stateuntil it re-
ceivesa Membershipevent. A joining processstarts
executingthealgorithmin theCM stateanddoesnot
leave it until it receivesamembershipevent.

Lemma 4.4 Theonly stateswhere usermessagesare
receivedby the key-agreementalgorithm from the
groupcommunicationsystemareSandCM.

Proof: After receiving a VS membershipnotification
in the CM state(by Lemma4.3 this is the only state
wheremembershipnotificationsarereceived)thepro-
cessmovesto oneof thestatesFT, PT, FO,KL, or S.
Thetransitionto stateS installsa new secureview, so
in thatstatetheprocesscansendandreceiveusermes-
sages.In any of theFT, PT, FO,KL or CM statesthe
processis not allowed to sendapplicationmessages.
If anapplicationmessageis receivedin any of theFT,
PT, FO or KL states,two casesarepossible:first, this
is a messagesentin theprevioussecureview in state
S, or second,this is a messagesentby a processthat
completedthe key agreementbeforethis processdid
andalreadyinstalledthenew view andsentmessages.

The first caseis not possiblebecauseit implies
thatthegroupcommunicationsystemdeliveredauser

Case Event is

Data_Message:

 del i ver (dat a_msg)

Transitional_Signal:

 if(Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 VS_t r ansi t i onal : = TRUE

Membership:

 if(Fi r st _cascaded_member shi p)
 VS_set : = New_memb_msg. mb_set
 Fi r st _cascaded_member shi p : = FALSE
 endif
 VS_set : = VS_set − memb_msg. l eave_set
 if(! empt y(memb_msg. l eave_set) &&
 Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 New_memb_msg. mb_i d : = memb_msg. mb_i d
 New_memb_msg. mb_set : = memb_msg. mb_set
 if(! al one(memb_msg. mb_set))
 if(choose(memb_msg. mb_set) == Me)
 cl q_dest r oy_ct x(Cl q_ct x)
 Cl q_ct x : = cl q_f i r st _member (Me,
 Gr oup_name)
 mer ge_set : = memb_msg. mb_set − Me
 par t i al _t oken_msg : = cl q_updat e_key(
 Cl q_ct x, mer ge_set)
 next _member : = cl q_next _member (Cl q_ct x)
 uni cast (FI FO, par t i al _t oken_msg,
 next _member)
 St at e : = WAIT_FOR_FINAL_TOKEN
 else / * not chosen * /
 cl q_dest r oy_ct x(Cl q_ct x)
 Cl q_ct x : = cl q_new_member (Me)
 St at e : = WAIT_FOR_PARTIAL_TOKEN
 endif
 else / * al one * /
 cl q_dest r oy_ct x(Cl q_ct x)
 Cl q_ct x : = cl q_f i r st _member (Me, Gr oup_name)
 Gr oup_key : = cl q_ext r act _key(Cl q_ct x)
 New_memb_msg. vs_set : = Me
 del i ver (New_memb_msg)
 Fi r st _t r ansi t i onal : = TRUE
 Fi r st _cascaded_member shi p : = TRUE
 St at e : = SECURE
 endif
 VS_t r ansi t i onal : = FALSE

Partial_Token, Final_Token, Fact_out, Key_List:

 i gnor e

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

22
11

44

33

33

55

Figure 9. Code executed in
WAIT FOR CASCADING MEMBERSHIP
state

14

messagenot in the view in which it wassent,which
contradictstheSendingView Deliveryproperty. In the
secondcase,notethatthekey list messageisbroadcast
asasafemessage.A usermessagecannotbereceived
in theKL statebeforethekey list messagebecauseit
wassentafter its senderprocessedthe key list mes-
sage. This contradictsthe CausalDelivery property.
Thereforetheonly stateswherea processcanreceive
usermessagesareSandCM.

4.2.1 Self Inclusion

Theorem 4.1 Whenprocess, installs a secure view,
theview includes, .

Proof: By the protocol, we update the view-
to-be-installedonly when a membershipnotifica-
tion is received from GCS (i.e., when we update
New membership.mbset in Figure 9, Mark 2). By
Lemma4.3,thisoccursonly in theCM state.

By thealgorithm,therearetwo transitionsthat in-
stall secureviews. Thefirst transitioncorrespondsto
a Membershipevent occurrencein the CM state,in-
dicatingthat process, is alone. In this case,the se-
curemembershipnotificationis immediatelydelivered
with , (theonly one)in it. Thesecondtransitioncorre-
spondsto aKey List eventoccurrencein theKL state.
In this case,at the time thenew secureview is deliv-
ered,it indicatesthe VS groupmemberslist, andas
GCSprovidesSelf Inclusion,, is guaranteedto beon
thatlist.

4.2.2 Local Monotonicity

Lemma 4.5 Theidentifierofasecureview is theiden-
tifier of themostrecentlyinstalledVSview.

Proof: By the protocol, we update the view-
to-be-installedonly when a membershipnotifica-
tion is received from GCS (i.e., when we update
New membership.mbid in Figure 9, Mark 1). By
Lemma4.3,thisoccursonly in theCM state.

By thealgorithm,therearetwo transitionsthat in-
stallsecureviews. Thefirst transitioncorrespondsto a
Membershipeventreceivedin theCM state,indicating
thatprocess, is alone. In this case,thesecuremem-
bershipnotificationis immediatelydeliveredwith the

mostrecentVS identifier. Thesecondtransitioncor-
respondsto a Key List eventreceivedin theKL state.
In thiscase,whenthesecureview is delivered,it indi-
catesthemostrecentVS identifier.

Theorem 4.2 If process, installsa secureview - .0/21
after installing a view - .3/4165 then the identifier of
- .3/41 is greaterthantheidentifierof - .3/4165 .
Proof: Thealgorithmdoesnot createor changeview
identifiers. It only usesthe identifiers provided by
the VS membershipnotificationswithout reordering
them. By Lemma 4.5, , always delivers a secure
view with the sameidentifier as the most recentVS
identifier, therefore,it delivers a subsequenceof the
sequenceof VS identifiers. Becauseit delivers a
subsequenceof VS identifiersandbecauseGCSpro-
vides Local Monotonicity, the key-agreementalgo-
rithm providesLocalMonotonicitytoo.

4.2.3 Sending View Delivery

Theorem 4.3 A message is delivered by the key-
agreementalgorithmin thesecureview thatit wassent
in.

Proof: By the algorithm, messagesare delivered
by the key-agreementalgorithm only in the S and
CM states. In the S state, the secure view is
the most recent VS view (i.e., when we update
New membership.mbsetin Figure9, Mark 2). By the
SendingView Delivery propertyof GCS, the above
claim is true.

By thealgorithm,a processmovesto theCM state
after the applicationagreedto closethe membership
by sendinga flush ok message(seeFigure4). Since
the key-agreementalgorithmdelivers a messageim-
mediately after it was received and GCS provides
SendingView Delivery, all themessagessentin view
- will be deliveredbeforethe next VS view wasre-
ceived,andtherefore,beforea new secureview is in-
stalled.

4.2.4 Delivery Integrity

Theorem 4.4 If process, delivers a message 7 in a
secure view - , thenthere existsa process8 that sent
7 in - causallybefore , delivered 7 .

15

Proof: This proof containstwo parts. First, we show
that thekey-agreementalgorithmdeliversmessage7
causallyafter it wassent. This is true by transitivity
since:

9 The key-agreementalgorithmsends7 immedi-
atelyafterit wassentby theapplication.

9 By the delivery integrity propertyof GCS, the
group communicationsystemdelivers message
7 causallyafterit wassent.

9 The key-agreementalgorithmdelivers 7 imme-
diatelyafterit wasreceivedfrom thegroupcom-
municationsystem.

Notethattheusermessagesarenotreordered,they are
deliveredassoonasthey arereceived.

Second,weshow thatif process, deliversmessage
7 in - , thenthereexistsa process8 thatsent 7 in - .
Thisclaim is trueby Theorem4.3.

4.2.5 No Duplication

Theorem 4.5 A message is not senttwice using the
key-agreementalgorithm. The key-agreementalgo-
rithm doesnot deliver a message twice to the same
process.

Proof: By thealgorithm,usermessagesaresentonly
in the S state,whenthe applicationis sendingthem,
soamessageis not senttwice.

By the algorithm, messagesare deliveredonly in
theS andCM states.They aredeliveredimmediately
uponreceiptfrom the groupcommunicationsystem.
SinceGCS guaranteesno duplication, it can not be
thata messagesentonceto thegroupcommunication
systemis receivedtwice. Notethatthekey-agreement
algorithm generatesCliquesmessages,but theseare
neverdeliveredto theapplicationsothey donotaffect
theNo Duplicationproperty.

4.2.6 Self Delivery

Theorem 4.6 If process, sendsa message 7 , then,
delivers 7 unlessit crashes.

Proof: By the algorithm, a messageis sent by the
applicationvia thegroupcommunicationsystemand

the key-agreementalgorithm never discardsapplica-
tion messagesandit deliversthemimmediatelyafter
receiving them.SinceGCSprovidesSelfDelivery, the
theoremis true.

4.2.7 Transitional Set

Lemma 4.6 If process, installeda secureview - .0/21
with process8 in themembersset,they bothinstall the
samenext VSview, and, ’sVStransitionalsetincludes
8 , then 8 musthaveinstalled - .3/41 .
Proof: By the protocol, a processinstalls a secure
view with more than one memberonly in the KL
state.A processin theKL stateinstallsa secureview
if andonly if it receives a key list msgmessagebe-
fore a transitionalsignalfor thecurrentVS view. Be-
cause, and 8 move togetherto the new VS view
and the key list msg is a safemessage,by the Safe
Delivery propertiesof GCS, 8 must also receive the
key list msg messagebefore the transitionalsignal.
Therefore,8 mustalsohave installed- .0/21 .
Theorem 4.7 If two processes, and 8 install the
samesecure view - .3/41 , and 8 is includedin , ’s tran-
sitional setfor thisview, then, ’sprevioussecureview
wasidenticalto 8 ’s previoussecure view.

Proof: By thealgorithm,thetransitionalsetfor a new
securemembershipnotificationis initialized to bethe
sameastheprevioussecureview memberset.Further-
more,weonly remove from thissetmembersreported
by VS membershipnotificationsas not being in our
VS transitionalset (i.e. the leaveset), andwe never
addmembersto thetransitionalset.Dueto this, if 8 is
includedin , ’ssecuretransitionalsetthen 8 musthave
beenincludedin all of , ’s VS transitionalsetssince
thelastsecureview deliveredat , . Additionally, , and
8 musthave installedthesamesequenceof VS views
prior to - .3/41 becausethey bothinstalledtheVS view
correspondingto - .0/21 andbecauseof theGCStran-
sitionalsetpropertynumbertwo.

Therefore,by Lemma4.6, 8 musthave installedthe
sameprevious secureview as , . To show that 8 in-
stalledno interveningsecureviews, thesameproof is
repeatedreversing, and 8 ’s roleswith theadditional
informationthat , is in 8 ’s securetransitionalsetbe-
causeof theway thesetis computedandGCStransi-
tional setpropertynumbertwo.

16

Theorem 4.8 If two processes, and 8 install the
samesecure view, and 8 is includedin , ’s transitional
setfor this view, then , is includedin 8 ’s transitional
setfor this view.

Proof: If , and 8 install the samesecureview, and
8 is includedin , ’s transitionalset for this view, but
, is not includedin 8 ’s transitionalset for this view,
two casesarepossible.First, 8 ’s previoussecureview
wasnot thesameas , ’s secureview. In this case,by
theorem4.7, 8 is not includedin , ’s transitionalset,
contradictingour assumptionthat 8 is includedin , ’s
transitionalset.

Second,8 ’sprevioussecureview wasthesame,but
anintermediaryVS notificationdeliveredto 8 did not
include , in its transitionalset. Since, and 8 install
the samesecureview, it mustbe that, , and 8 install
thesameVS view at somepoint. Thefirst suchview
installedat 8 preservesthat , is not in 8 ’s transitional
setby GCStransitionalsetpropertynumberone. By
GCStransitionalsetpropertynumbertwo, , mustnot
have 8 in its transitionalsetfor thatview. By theproto-
col, then 8 is removedfrom , ’ssecuretransitionalset,
andbecause, ’s transitionalsetnever grows 8 will not
bein , ’ssecuretransitionalsetwhen, and 8 install the
new secureview, whichcontradictsourassumption.

4.2.8 Virtual Synchrony

Theorem 4.9 Two processes, and 8 that move to-
getherthroughtwo consecutivesecure views, deliver
thesamesetof messagesin theformerview.

Proof: By Lemma 4.4, user messagesare received
by thekey-agreementalgorithmonly in the S or CM
statesand as specifiedby the protocol, they are de-
liveredassoonasthey arereceived. Therefore,user
messagesaredeliveredonly in theS andCM states.

By Lemma4.3, VS membershipnotificationsare
received only in the CM state. By the protocol (the
waywe computethetransitionalset),if process, and
8 move togetherfrom -;: .3/41 to -=< .3/41 , then , and 8
movedtogetherthroughthesequenceof VS views -;:
to ->:0? , ..., ->:A@CBD? to -;:A@ , -;:A@ to -E< 5.

Therefore,by theVirtual Synchrony propertyguar-
anteedby GCS,processes, and 8 deliver the same

5Note that F canbe zerowith the in-betweensetpotentially
empty(GIH to G4J).

setof messagesbetween-;: and ->:0? , -;:0? and ->:LK , ...
-;:A@ and -E< . No othermessagesaredeliveredbetween
-E< and -=< .0/21 installationsbecauseany suchmessage
hasto be sentin -=< by the GCS SendingView De-
livery property. By the protocol, upon sendingthe
flush ok msgmessagethatconcludes-;: eachprocess
moves to the CM stateand by Lemma4.2, will not
senddatamessagesbeforeinstalling -E< .0/21 . In partic-
ular, it will notsendmessagesbetween-E< and -E< .0/21 .
Therefore,, and 8 deliver thesamesetof messagesin
-;: .3/41 .

4.2.9 Causal Delivery

Lemma 4.7 All the messages delivered by the key-
agreementalgorithm,supporttheorderingproperties
with which they were delivered by thegroup commu-
nicationsystem.

Proof: By the protocol, the messagesdeliveredby a
processin secureview - .3/41 , aremessagesdelivered
by the GCS in VS view - . Sincemessagesare de-
liveredto the applicationin the order they were re-
ceived from the GCS,without beingdelayed,no ap-
plicationmessagesaredroppedor duplicated,andno
phantommessagesaregenerated,themessagesdeliv-
eredin - .3/41 , supportthesameorderingrequirements
asthey weredeliveredin - .

Theorem 4.10 If message 7 causallyprecedesmes-
sage 7"5 , and both are sentin the samesecure view,
thenanyprocess8 that delivers 7 5 delivers 7 before
7"5 .
Proof: This is trueby Lemma4.7.

4.2.10 Agreed Delivery

Theorem 4.11 If messages 7 and 7 5 aredeliveredat
process, in thisorder, and 7 and 7"5 aredeliveredby
process8 then7 5 is deliveredby 8 after 7 is delivered
by 8 .
If messages 7 and 7 5 are delivered by process, in
secure view -;: .0/21 in this order, and 7"5 is delivered
by process8 in secure view -E< .0/21 and message 7
wassentby a processM which is a memberof secure
view -=< .0/21 , then 8 delivered 7 .

17

Proof: This is trueby Lemma4.7andbecausethese-
cure transitionalset is the intersectionof all the VS
transitionalsets.

4.2.11 Safe Delivery

Theorem 4.12 If process, deliversa safemessage 7
in view - beforethetransitionalsignal,theneverypro-
cess8 of view - delivers 7 unlessit crashes.If process
, delivers a safemessage 7 in view - after thetransi-
tional signal,theneveryprocess8 that belongsto , ’s
transitionalsetdelivers 7 after thetransitionalsignal
unlessit crashes.

Proof: By Lemma4.7, key-agreementdelivers mes-
sageswith the sameorderingguaranteeswith which
they weredeliveredby theGCS.

By the algorithm, the first transitionalsignal re-
ceived from GCSis deliveredto the application(see
Mark 3 in Figures4, 7, 6, 5, 8, 9).

By thealgorithm,thetransitionalsetdeliveredwith
a new securemembershipin calculatedas follows,
whenagroupchangehappenswhile thegroupisstable
(stateS),thetransitionalsetis initializedto thecurrent
securemembershiplist (seeMark 4, in Figure 9) and
thenevery time anothermembershiphappensbefore
installing this securemembership,the membersthat
left the groupare removed from the transitionalset,
suchthat whenthe new securemembershipis deliv-
ered,thetransitionalsetis correct.Therefore,thesafe
delivery requirementsarepreserved.

5 An Optimized Robust Algorithm

In this sectionwe show how the algorithm pre-
sented in the previous section can be optimized,
suchthat the price paid for handlingcommon,non-
cascadedeventsis lower, while preservingthe same
set of group communicationsemanticsand security
guarantees.

5.1 Algorithm Description

The basicalgorithm presentedin Section4 is ro-
bust even whencascadedgroupeventsoccur. Every
time a membershipnotificationis deliveredfrom the
group communicationsystem,the algorithm ignores

all theprevious key agreementinformationandstarts
themerge protocolchoosinga memberfrom thenew
group to initialize it. Therefore,this algorithmpays
more thannecessaryfor computinga groupkey in a
regular case,becauseit doesnot distinguishbetween
a membershipthat finishedwithout beinginterrupted
andacascadedmembership.

Thealgorithmdescribedabovecanbeoptimizedso
that it distinguishesbetweenthesetwo cases.Every
time the group view changes,the algorithm detects
the causeof the groupchange(join, leave, partition,
merge or a combinationof partition andmerge) and
invokes the CliquesGDH specificprotocol. For ex-
ample,in the casewherea leave occurred,the leave
protocolis invoked. Computinga new key in thecase
that a leave or partition occurred,requiresonly one
broadcast.Thus, leave eventscanbe handledimme-
diatelywith a lower communicationandcomputation
costthanthebasicalgorithmrequired.

In theoptimizedkey-agreementalgorithmthepro-
cessstill startsexecutingthestatemachineby invok-
ing the Join primitive. Also, at any moment,a pro-
cesscanvoluntarily leave the algorithmby invoking
theLeaveprimitive.

Theoptimizedalgorithmutilizesthefollowing two
statesin additionto thoseof thebasicalgorithm:

9 WAIT FOR SELF JOIN (SJ): this is the initial
statein which a processthat joined a groupen-
tersthestatemachine;theprocessis waiting for
the membershipmessagethat notifiesthe group
aboutits joining. In caseanetwork eventhappens
betweenthejoin requestandthemembershipno-
tification delivery, theGCSwill reportthecause
of thegroupchangeasbeinganetwork eventand
the transitionalsetwill containonly the joining
member. The only possibleevent is a Member-
ship.User MessageandSecureFlush Ok events
areillegal. An errorwill bereturnedto theuserif
they areattempted.All othereventsarenot pos-
sible.

9 WAIT FOR MEMBERSHIP (M): in this state
the processis waiting for a membershipno-
tification. The possible events are: Transi-
tional Signal, DataMessageand Membership.
The membershipnotification can be caused
by voluntarily events such as join or leave,

18

or network events. UserMessageand Se-
cure FlushOk eventsare illegal. An error will
be returnedto the user. All othereventsarenot
possible.

While a processstartsthebasicalgorithmin theCM
state,in the optimizedalgorithma processstartsthe
algorithmin stateSJ.Fromthestablestate(S state)if
the groupchangedthe processmoves to the M state
insteadof moving to theCM stateasin thebasicalgo-
rithm. Fromhere,dependingonthecauseof thegroup
change,themergeor theleaveCliquesGDH protocols
areinvoked. Also, a combinednetwork event which
includesboth joins andleavessimultaneouslycanbe
handledby a modified versionof the CliquesGDH
merge protocol (as describedin Section5.2). If an-
othergroupchangehappensbeforeakey is computed,
theprocesswill move to theCM stateandexecutethe
basicalgorithm.

Themerge setand leavesetfieldsof themember-
shipnotificationcanbeusedto determinethecauseof
the groupview change. In addition, we usea mod-
ified versionof the procedureclq updatekey proce-
durewhichcanhandlecombinednetwork events.

Thediagramof thestatemachineof thealgorithmis
presentedin Figure12 andthecorrespondingpseudo-
codein Figures4,5,6, 7, 8, 9, 10,11.

5.2 Handling Bundled Events

Most group events are homogeneousin nature:
leave (partition)or join (merge)of oneor moremem-
bers. However, a group communicationsystemcan
decideto bundleseveral sucheventsif they occur in
closeproximity, i.e.,within a very shorttime interval.
Themain incentive for doingso is to reducecommu-
nication costsand limit the impact and overheadon
theapplication.

As mentionedabove,Cliquesprovidestwo separate
protocolsthathandleleave andmergeevents.Eachof
theseprotocolscantrivially handlebundledeventsof
thesametype,i.e., theCliquesmergeprotocolcanac-
commodateany combinationof bundledmergesand
the Cliques leave protocol can do the samefor any
combinationof leavesandpartitions.A moreinterest-
ing scenariooccurswhena singlemembershipevent
bundlesmerges/joinswith leaves/partitions.Oneob-
vious way to handlethis type of event is to first in-

Case Event is

Membership:

 VS_set : = New_memb_msg. mb_set
 New_memb_msg. mb_i d : = memb_msg. mb_i d
 New_memb_msg. mb_set : = memb_msg. mb_set
 Fi r st _cascaded_member shi p : = FALSE
 if(! al one(memb_msg. mb_set))
 if(choose(memb_msg. mb_set) = Me))
 Cl q_ct x : = cl q_f i r st _member (Me,
 Gr oup_name)
 mer ge_set : = memb_msg. mer ge_set
 par t i al _t oken_msg : = cl q_updat e_key(
 Cl q_ct x, mer ge_set)
 next _member : = cl q_next _member (Cl q_ct x)
 uni cast (FI FO, par t i al _t oken_msg,
 next _member)
 St at e : = WAIT_FOR_FINAL_TOKEN
 else
 Cl q_ct x : = cl q_new_member (Me)
 St at e : = WAIT_FOR_PARTIAL_TOKEN
 endif
 else
 Cl q_ct x : = cl q_f i r st _member (Me, Gr oup_name)
 Gr oup_key : = cl q_ext r act _key(Cl q_ct x)
 New_memb_msg. vs_set : = Me
 del i ver (New_memb_msg)
 Fi r st _cascaded_member shi p : = TRUE
 St at e : = SECURE
 endif
 VS_t r ansi t i onal : = FALSE

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

11
22

44

Figure 10. Code executed in
WAIT FOR SELF JOIN state

19

Secure
(S)

Wait for
Final_Token

(FT)

Wait for
Partial_Token

(PT)

Wait for
Key_List

(KL)

Network &
I’m not alone & I’m chosen:
generate partial token,
unicast

partial_token_msg to next
update VS set

(Join & I’m not alone) |
(Network &
I’m not alone & I’m not chosen):
update VS set

Membership & I’m alone:
generate key,
update VS set
install memb.

Wait for
Cascading

Membership
(CM)

Key_List:
extract key;
install memb.

Collect
Fact_Outs

(FO)

NET & I’m not alone &
is_Merge & I am a new guy:
update VS set

Sec_Flush_Ok:
send
flush_ok_msg

Trans_Sig &
first trans_sig:
deliver
trans_sig_msg

Membership & I’m alone:
update key,
update VS set
install memb.

Join:
if (I’m chosen) {

update partial token,
unicast partial_token_msgto next

}
update VS set

Network & I’m not alone & I am an old guy & is_merge
if (I’m chosen) {

If(is_Partition) {
remove leave_list from cliques_list

}
update partial token,
unicast partial_token_msgto next

}
update VS set

(Leave ||
(Network & !is_Merge))
& I am chosen: {
generate new share;
update key list;
safely broacast

key_list_msg
}
update VS set

Wait for
Self_Join

(SJ)

Join group

Flush_Request:
deliver
flush_request_msg

Data_Message:
deliver data_msg

1

16

15

23

20

14

25

27
29

33

32

31

22

24

MEMB & I’m alone:
update key,
update VS set
install memb.

3

33

Wait for
Membership

(M)

29

14

3

18

Trans_Sis:
deliver trans_sig_msg

Data_Message:
deliver data_msg

17

Notes: VS_set is delivered as part of the membership
: All Cliques messages but key_list_msgare sent FIFO; key_list_msg is sent as a safe message.
: A process can leave the group in any state

19

User_Message:
send data_msg

Figure 12. Optimiz ed algorithm

voke Cliquesleave to processall leaves/partitionsand
then invoke Cliques merge to processjoins/merges.
However, this is inefficient sincethegroupwould es-
sentiallyperformtwo separatekey agreementproto-
cols where only one is truly needed. We can take
advantageof the fact that both protocolsin Cliques
areinitiatedby thegroupcontroller. After processing
all leaves/partitions,thegroupcontrollercansuppress
the usualbroadcastof new partial keys and, instead,
forward the resultingset to the first merging/joining
memberthereby initiating a merge protocol. This
savesanextraroundof broadcastandatleastonecryp-
tographicoperationfor eachmember.

5.3 Correctness Proof

In this sectionwe prove that the optimizedalgo-
rithm describedabove providesthevirtual synchrony

semanticpresentedin Section3.2.

Wenotethattheoptimizedalgorithmstatemachine
utilizes two morestatesthat caninstall securemem-
berships:SJandM. In both of thesestatesa secure
view canbeinstalledonly in thespecialcasewhenthe
groupconsistsof only onemembersotheprocesscan
computeakey andinstall thesecurememberships.

Unlike thebasicalgorithmwhereapplicationmes-
sagesweredeliveredonly in statesS andCM, in the
optimizedalgorithm applicationmessagesare deliv-
eredin theS andM states.Membershipnotifications
arereceivedin theCM, SJ,andM states.

It canbenoticedthatfor theoptimizedalgorithm,a
processstartsthealgorithmin theSJstate.Also, from
the stablestate(the S state),due to a group change
notificationthattriggersthekey-agreementalgorithm,
insteadof moving to theCM stateasin thebasicalgo-
rithm, theprocessmovesto theM state.A processcan

20

Case Event is

Data_Message:

 del i ver (dat a_msg)

Transitional_Signal:

 if(Fi r st _t r ansi t i onal)
 del i ver (t r ans_si gnal _msg)
 Fi r st _t r ansi t i onal : = FALSE
 endif
 VS_t r ansi t i onal : = TRUE

Membership:

 VS_set : = New_memb_msg. mb_set
 VS_set : = VS_set − memb_msg. l eave_set
 New_memb_msg. mb_i d : = memb_msg. mb_i d
 New_memb_msg. mb_set : = memb_msg. mb_set
 New_memb_msg. vs_set : = Vs_set
 Fi r st _cascaded_member shi p : = FALSE
 iiff(! al one(memb_msg. mb_set))
 mer ge_set : = memb_msg. mer ge_set
 l eave_set : = memb_msg. l eave_set
 if(! empt y(l eave_set) | | empt y(mer ge_set))
 if(choose(memb_msg. mb_set) = Me)
 key_l i st _msg : = cl q_l eave(Cl q_ct x,
 l eave_set)
 br oadcast (SAFE, key_l i st _msg, Gr oup_name)
 endif
 St at e : = WAIT_FOR_KEY_LIST
 else
 if(i s_i n(chosen(memb_msg. mb_set) ,
 memb_msg. vs_set)) / * ol d member * /
 if(choose(memb_msg. mb_set) = Me)
 par t i al _t oken_msg : = cl q_updat e_key(
 Cl q_ct x, l eave_set , mer ge_set))
 next _member : = cl q_next _member (
 Cl q_ct x)
 uni cast (FI FO, par t i al _t oken_msg,
 next _member)
 St at e : = WAIT_FOR_FINAL_TOKEN
 endif
 else / * new member * /
 cl q_dest r oy_ct x(Cl q_ct x)
 Cl q_ct x : = cl q_new_member (Me)
 St at e : = WAIT_FOR_PARTIAL_TOKEN
 endif
 else / * al one * /
 Cl q_ct x : = cl q_f i r st _member (Me, Gr oup_name)
 Gr oup_key : = cl q_ext r act _key(Cl q_ct x)
 New_memb_msg. vs_set : = Me
 del i ver (New_memb_msg)
 Fi r st _t r ansi t i onal : = TRUE
 Fi r st _cascaded_member shi p : = TRUE
 St at e : = SECURE
 endif
 VS_t r ansi t i onal : = FALSE

User_Message, Secure_Flush_Ok:

 i l l egal , r et ur n an er r or t o t he user

All other events:

 not possi bl e

33

44

11

22

55

Figure 11. Code executed in
WAIT FOR MEMBERSHIP state

move in theCM stateonly from thePT, FT, FO, and
KL states.From the momentthat the processmoves
to theCM state,it executesthebasicalgorithm.

For the rest of the proof, we make useof Lem-
mas4.1and4.2which arestill valid. Thefirst lemma
is a property of the underlying group communica-
tion layerandthesecondoneis enforcedby thekey-
agreementalgorithm. We alsonote that Lemma4.2
which specifiesthat a processis not allowed to send
user messageswhile performing the key-agreement
algorithm, enforcesthat a processcannot senduser
messagesin any of the M, CM, PT, FT, FO, or KL
states.

Lemma 5.1 The only stateswhere VS membership
notificationsarereceivedaretheSJ, CM andM states.

Proof: By Lemma 4.1, a membershipnotifica-
tion delivery is precededby the processsendinga
flush ok msg message,unless the processis join-
ing. By the algorithm, immediatelyafter sendinga
flush ok msg message,the processtransitionsto ei-
thertheM or CM statesanddoesnotleavethesestates
until it receivesa Membershipevent. A joining pro-
cessstartsexecutingthealgorithmin theSJstateand
doesnot leave it until it receivesamembershipevent.

Lemma 5.2 Theonlystateswhereusermessagescan
bereceivedare SandM.

Proof: By theprotocol,in theS statetheprocesscan
sendand/orreceivemessages.By Lemma4.1,thefirst
messagethat a processreceives in the SJstateis the
VS membershipnotification which triggersimmedi-
atelya transitionto anotherstate,sonousermessages
arereceivedin theSJstate.

After receiving aVS membershipnotificationfrom
GCSin any of theSJ,M or CM states(by Lemma5.1
thesearethe only stateswheremembershipnotifica-
tions are received), the processmoves to one of the
statesFT, PT, FO, KL, or S. The transitionto stateS
installsa new secureview, soin thatstatetheprocess
cansendandreceive usermessages.In any of theM,
FT, PT, FO, KL or CM statesthe processis not al-
lowedto sendapplicationmessages.If anapplication
messageis received in any of theCM, FT, PT, FO or
KL states,two casesarepossible:first, this is a mes-
sagesentin theprevioussecureview in stateS,or sec-
ond,this is amessagesentby aprocessthatcompleted

21

the key-agreementalgorithm beforethis processdid
andalreadyinstalledthenew view andsentmessages.

The first caseis not possiblebecauseit implies
thatthegroupcommunicationsystemdeliveredauser
messagenot in the view in which it wassent,which
contradictstheSendingView Deliveryproperty. In the
secondcase,notethatthekey list messageisbroadcast
asasafemessage.A usermessagecannotbereceived
in theKL statebeforethekey list messagebecauseit
wassentafter its senderprocessedthe key list mes-
sage. This contradictsthe CausalDelivery property.
Thereforetheonly stateswherea processcanreceive
usermessagesareSandM.

5.3.1 Self Inclusion

Theorem 5.1 Whenprocess, installs a secure view,
theview includes, .

Proof: By the protocol, we updatethe view-to-be-
installedonly when a membershipis received from
GCS (i.e., when we updateNew membership.mbset
in Figures9, 11 and 10, Mark 2). By Lemma5.1,
thisoccursonly in theSJ,M andCM states.

By thealgorithm,therearefour transitionsthat in-
stall secureviews. The first threetransitionscorre-
spondto a Membershipeventreceived in theCM, M,
or SJstates,indicatingthatprocess, is alone.In this
case,thesecuremembershipis immediatelydelivered
with , (theonly one)in it.

The fourth transition correspondsto a Key List
eventreceivedin theKL state.In thiscase,at thetime
thenew secureview is deliveredit indicatesthemost
recentVS groupmemberslist, andasthegroupcom-
municationsystemprovidesSelf Inclusion, , is guar-
anteedto beon thatlist.

5.3.2 Local Monotonicity

The proof of this propertyis very similar to the one
we gave for thebasicalgorithm. It is enoughto show
that Lemma4.5 is still true for the optimizedproto-
col, therefore,by Theorem4.2,LocalMonotonicityis
providedby thekey-agreementalgorithm.

Lemma 5.3 Theidentifierofasecureview is theiden-
tifier of themostrecentlyinstalledVSview.

Proof: By the protocol, we updatethe view-to-be-
installedonly when a membershipis received from
GCS(i.e.,whenweupdateNew membership.mbid in
Figures9, 10, and11, Mark 1). By Lemma5.1, this
occursonly in theCM, SJ,andM states.

By thealgorithm,therearefour transitionsthat in-
stall secureviews. The first threetransitionscorre-
spondto a Membershipevent received in oneof the
CM, SJ,or M states,indicatingthatprocess, is alone.
In thiscase,thesecuremembershipis immediatelyde-
liveredwith themostrecentVS identifier.

The fourth transition correspondsto a Key List
event received in theKL state.In this case,whenthe
view is delivered,it indicatesthemostrecentVS iden-
tifier.

5.3.3 Sending View Delivery

Theorem 5.2 A message is delivered by the key-
agreementalgorithm in the secure view that is was
sentin.

Proof: By thealgorithm,messagesaredeliveredonly
in theS andM states.In theS state,thesecuremem-
bershipis themostrecentVS membership(i.e.,when
we updateNew membership.mbsetin Figure9, mark
2). By theGCSSendingView Delivery property, all
the messagessentin the S statearedeliveredin the
secureview thatthey weresentin.

By thealgorithm,aprocessmovesto theM stateaf-
ter theapplicationagreedto closethemembershipby
sendinga flush ok message(seeFigure4). Thegroup
communicationsystemguaranteesthatbeforedeliver-
ing the new VS view, it will deliver all the messages
that were sent in the previous view. Sincethe key-
agreementalgorithmdeliversa messageimmediately
after it wasreceivedandGCSprovidesSendingView
Delivery thenall themessagessentin view - will be
deliveredbeforethe next VS view wasreceived, and
therefore,beforeanew secureview is installed.

5.3.4 Delivery Integrity

Theorem 5.3 If process, delivers a message 7 in a
view - , thenthere existsa process8 that sent 7 in -
causallybefore , delivered 7 .

22

Proof: The proof is identicalto the proof in the case
of thebasicalgorithm.

5.3.5 No Duplication

Theorem 5.4 A message is not senttwice using the
key-agreementalgorithm. The key-agreementalgo-
rithm doesnot deliver a message twice to the same
process.

Proof: Theproof is very similar to theonein thecase
of thebasicalgorithm.

5.3.6 Self Delivery

Theorem 5.5 If process, sendsa message 7 , then,
delivers 7 unlessit crashes.

Proof: The proof is identical to the onewe gave for
thebasicalgorithm.

5.3.7 Transitional Set

We remarkthat in theoptimizedprotocol,whena se-
cure view changes,the first VS view notification is
receivedin theM statewhile latercascadedVS mem-
bershipsarereceived in theCM state.Thecomputa-
tion of the securetransitionalset is the sameas for
thebasicalgorithm.Therefore,theargumentswepro-
videdto prove Lemma4.6 andTheorems4.7 and4.8
arestill valid.

5.3.8 Virtual Synchrony

Theorem 5.6 Two processes, and 8 that move to-
getherthroughtwo consecutivesecure views, deliver
thesamesetof messagesin theformerview.

Proof: By Lemma5.2,usermessagesarereceivedby
thekey-agreementalgorithmfrom GCSonly in theS
or M statesandasspecifiedby theprotocol,they are
deliveredassoonasthey arereceived.Therefore,user
messagesaredeliveredto theapplicationonly in theS
andM states.

By Lemma5.1, VS membershipnotificationsare
receivedonly in theSJ,CM andM states.By thepro-
tocol (thewaywecomputethetransitionalset),if pro-
cess, and 8 move togetherfrom ->: .0/21 to -E< .3/41 ,
then , and 8 movedtogetherthroughthesequenceof

VS views -;: to -;:0? , ..., ->:A@CBD? to ->:A@ , -;:A@ to -E< 6. If N
is zero, -=< will bereceived in theM state,otherwise,
-;:0? is receivedin theM stateandall otherpossibleVS
views (including -=<) will bereceivedin theCM state.

Therefore,by theVirtual Synchrony propertyguar-
anteedby GCS, processes, and 8 deliver the same
setof messagesbetween-;: and ->:0? , -;:0? and ->:LK , ...
-;:A@ and -E< . No othermessagesaredeliveredbetween
-E< and -=< .0/21 installationsbecauseany suchmessage
hasto be sentin -=< by the GCS SendingView De-
livery property. By the protocol, upon sendingthe
flush ok msgmessagethatconcludes-;: eachprocess
movesto theM stateandby Lemma4.2,will notsend
data messagesbefore installing -E< .0/21 . In particu-
lar, it will not sendmessagesbetween-E< and -E< .0/21 .
Therefore,, and 8 deliver thesamesetof messagesin
-;: .3/41 .

5.3.9 Causal Delivery

Theorem 5.7 If message 7 causallyprecedesmes-
sage 7"5 , and both are sentin the samesecure view,
thenanyprocess8 that delivers 7 5 delivers 7 before
7"5 .

Proof: The proof is identical to the oneprovided for
thebasicalgorithm.

5.3.10 Agreed Delivery

Theorem 5.8 If messages 7 and 7"5 are delivered at
process, in this order, and 7 and 7 5 are delivered
by process 8 then 7"5 is delivered by 8 after 7 is
deliveredby 8 .
If messages 7 and 7"5 are delivered by process
, in secure view -;: .3/41 in this order, and 7 5 is
delivered by process 8 in secure view -E< .0/21 and
message 7 wassentbya processM which is a member
of secure view -=< .0/21 , then 8 delivered 7 .

Proof: The proof is identical to the oneprovided for
thebasicalgorithm.

6Note that F canbe zerowith the in-betweensetpotentially
empty(GIH to G4J).

23

5.3.11 Safe Delivery

Theorem 5.9 If process, delivers a safemessage 7
in view - beforethetransitionalsignal,theneverypro-
cess8 of view - delivers 7 unlessit crashes.If process
, delivers a safemessage 7 in view - after thetransi-
tional signal,theneveryprocess8 that belongsto , ’s
transitionalsetdelivers 7 unlessit crashes.

Proof: By Lemma4.7, the key-agreementalgorithm
deliversmessageswith the sameorderingguarantees
with which they weredeliveredby thegroupcommu-
nicationsystem.

By the algorithm, the first transitionalsignal re-
ceived from the groupcommunicationsystemis de-
liveredto theapplication(seeMark 3 in Figures4, 7,
6, 5, 8, 9 and11.

By thealgorithm,thetransitionalsetdeliveredwith
a new securemembershipnotification is calculated
as follows, when a group changehappenswhile the
groupis stable(stateS), the transitionalsetis initial-
izedto thecurrentsecuremembershiplist (seeFigures
10 and11, Mark 4) andthenevery time anotherVS
membershipnotificationis receivedfrom GCSbefore
installing this secureview, the membersthat left the
groupareremoved from the transitionalset(seeFig-
ure9 and11,Mark 5), suchthatwhenthenew secure
membershipnotification is delivered,the transitional
set is correct. Therefore,the safedelivery require-
mentsarepreserved.

6 Conclusions

Implementingsecureand robust handlingof cas-
cadinggroupevents,usinganapproachoptimizedfor
the most frequentevents(join and leave), is crucial
in order to have a completesecuregroupcommuni-
cationsystem.Hardeningsecurityprotocolsto make
themrobustto asynchronousnetwork eventsalthough
difficult is possible. This work provides two robust
key agreementalgorithms.We prove thatby integrat-
ing them with a groupcommunicationsystemssup-
porting Virtual Synchrony, thegroupcommunication
membershipandorderingguaranteesarepreserved.

We intendto implementthe optimizedprotocol in
the SecureSpreadsystem. In additionwe intend to
exploreandexperimentwith robustnessandrecovery

techniquesfor aspectrumof othergroupkey manage-
ment mechanisms,suchas the centralizedapproach
andtheBurmester-Desmedtprotocol.

Finally, several necessaryservicesfor a secure
groupcommunicationcould leadto interestingfuture
work. They includeservicessuchasgroupmember
certification,intra-groupauthentication,privatecom-
municationwithin agroupandprivatecommunication
betweenmembersandnon-membersof thegroup.

References

[1] N. Asokan,V. Schoup,andM. Waidner, “Opti-
mistic fair exchangeof digital signatures,” IEEE
Journal on SelectedArea in Communications,
2000.

[2] W. Diffie and M. E. Hellman, “New directions
in cryptography,” IEEE Trans. Inform. Theory,
vol. IT-22,pp.644–654,Nov. 1976.

[3] Y. Amir, G. Ateniese,D. Hasse,Y. Kim, C. Nita-
Rotaru,T. Schlossnagle,J. Schultz,J. Stanton,
and G. Tsudik, “Securegroup communication
in asynchronousnetworkswith failures:integra-
tionandexperiments,” in Proceedingsof the20th
IEEE International Conferenceon Distributed
ComputingSystems, (Taipei, Taiwan), pp. 330–
343,April 2000.

[4] H. Harney andC.Muckenhirn,“Groupkey man-
agementprotocol (gkmp) specification,” Tech.
Rep.RFC2093,IETF, July1997.

[5] D. Harkins and N. Doraswamy, “A secure
scalable multicast key managementprotocol
(mkmp),” tech. rep., (Work in Progress).,
November1997.

[6] T. Ballardie, “Scalablemulticast key distribu-
tion,” Tech.Rep.RFC1949,IETF, 1996.

[7] T. Ballardie,P. Francis,andJ.Crowcroft, “Core
basedtrees:An architecturefor scalableinterdo-
mainmulticastrouting,” in Proceedingsof ACM
SIGCOMM’93, pp.85–95,1993.

[8] S. Mittra, “Iolus: A framework for scalablese-
cure multicasting,” in Proceedingsof the ACM
SIGCOMM’97, September1997.

24

[9] T. Hardjono, B. Cain, and I. Monga, “In-
tradomain group key managementprotocol,”
tech.rep.,draftietfipsecintragkm00.txt (Work in
Progress),November1998.

[10] C. K. Wong,M. G. Gouda,andS. S. Lam, “Se-
curegroup communicationsusing key graphs,”
in Proceedingsof the ACM SIGCOMM ’98,
pp.68–79,1998.

[11] D. Steer, L. Strawczynski, W. Diffie, and
M. Wiener, “A secureaudioteleconferencesys-
tem,” Advancesin Cryptology – CRYPTO’88,
August1990.

[12] A. Fiat and M. Naor, “Broadcastencryption,”
Advancesin Cryptology - CRYPTO’93, August
1993.

[13] M. BurmesterandY. Desmedt,“A secureandef-
ficient conferencekey distribution system,” Ad-
vancesin Cryptology – EUROCRYPT’94, May
1994.

[14] M. JustandS. Vaudenay, “Authenticatedmulti-
partykey agreement,” Advancesin Cryptology -
EUROCRYPT’96, May 1996.

[15] M. Steiner, G. Tsudik, and M. Waidner, “K ey
agreementin dynamicpeergroups,” IEEETrans-
actionsonParallel andDistributedSystems, Au-
gust2000.

[16] G. Ateniese,M. Steiner, and G. Tsudik, “New
multi-party authentication services and key
agreementprotocols,” IEEE Journal of Selected
Areasin Communication, vol. 18,March2000.

[17] R. Poovendran, S. Corson, and J. Baras, “A
sharedkey generationprocedureusingfractional
keys,” IEEE Milcom98, October1998.

[18] K. P. Birman and R. V. Renesse,ReliableDis-
tributedComputingwith the Isis Toolkit. IEEE
ComputerSocietyPress,March1994.

[19] Y. Amir, D. Dolev, S. Kramer, and D. Malki,
“Transis:A communicationsub-systemfor high
availability,” Digest of Papers, The22nd Inter-
national Symposiumon FaultTolerant Comput-
ing Systems, pp.76–84,1992.

[20] R. V. Renesse,K.Birman, andS. Maffeis, “Ho-
rus: A flexible group communicationsystem,”
Communicationsof theACM, vol. 39,pp.76–83,
April 1996.

[21] Y. Amir, L. E. Moser, P. M. Melliar-Smith,
D. Agarwal, andP. Ciarfella,“The totemsingle-
ring orderingand membershipprotocol,” ACM
Transactionson Computer Systems, vol. 13,
pp.311–342,November1995.

[22] B. Whetten,T. Montgomery, andS. Kaplan,“A
high performancetotally orderedmulticastpro-
tocol,” in Theory and Practice in Distributed
Systems,InternationalWorkshop, LectureNotes
in ComputerScience,p. 938,September1994.

[23] K. P. Birman andT. Joseph,“Exploiting virtual
synchrony in distributed systems,” in 11th An-
nual Symposiumon Operating SystemsPrinci-
ples, pp.123–138,November1987.

[24] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and
D. A. Agarwal, “Extendedvirtual synchrony,”
in Proceedingsof the IEEE 14th International
Conferenceon Distributed ComputingSystems,
pp. 56–65, IEEE ComputerSocietyPress,Los
Alamitos,CA, June1994.

[25] T. Anker, G. V. Chockler, D. Dolev, andI. Kei-
dar, “Scalablegroup membershipservicesfor
novel applications,” in Proceedingsof thework-
shop on Networks in Distributed Computing,
1998.

[26] I. Keidar, K. Marzullo, J. Sussman, and
D. Dolev, “A client-server oriented algorithm
for virtually synchronousgroupmembershipin
wans,” Tech.Rep.CS99-623,Univ. of Califor-
nia,SanDiegoTechReport,June1999.

[27] K. P. Kihlstrom,L. E. Moser, andP. M. Melliar-
Smith, “The secureringprotocols for secur-
ing group communication,” in Proceedingsof
the IEEE 31stHawaii InternationalConference
on SystemSciences, vol. 3, (Kona, Hawaii),
pp.317–326,January1998.

[28] O. Rodeh, K. Birman, M. Hayden, Z. Xiao,
andD. Dolev, “Ensemblesecurity,” Tech.Rep.

25

TR98-1703,Cornell University, Departmentof
ComputerScience,September1998.

[29] K. Birman, M. Hayden,O. Ozkasap,Z. Xiao,
M. Budiu, andY. Minsky, “Bimodal multicast,”
Tech. Rep. TR99-1745, Departmentof Com-
puterScience,CornellUniversity, May 1999.

[30] Y. Amir andJ. Stanton,“The spreadwide area
groupcommunicationsystem,” Tech.Rep.98-4,
JohnsHopkinsUniversity Departmentof Com-
puterScience,1998.

[31] Y. Amir, C. Danilov, andJ. Stanton,“A low la-
tency, losstolerantarchitectureandprotocolfor
wide areagroup communication,” in Proceed-
ingsof theInternationalConferenceonDepend-
able Systemsand Networks, pp. 327–336,June
2000.

[32] Y. Amir, ReplicationusingGroup Communica-
tion over a PartitionedNetwork. PhDthesis,In-
stituteof ComputerScience,The Hebrew Uni-
versityof Jerusalem,Jerusalem,Israel,1995.

[33] A. Fekete,N. Lynch,andA. Shvartsman,“Speci-
fying andusingapartionablegroupcommunica-
tion service,” in Proceedingsof the16thannual
ACM Symposiumon Principles of Distributed
Computing, (SantaBarbara,CA), pp.53–62,Au-
gust1997.

[34] Y. Kim, A. Perring,andG. Tsudik,“Simple and
fault-tolerantkey agreementfor dynamiccollab-
orativegroups,” in 7thACMConferenceonCom-
puter and CommunicationsSecurity, pp. 235–
244,ACM Press,November2000.

[35] A. Menezes,P. van Oorschot,andS. Vanstone,
Handbookof AppliedCryptography. CRCPress,
1996.

[36] G. Ateniese,O. Chevassut,D. Hasse,Y. Kim,
and G. Tsudik, “Design of a group key agree-
mentapi,” in DARPA InformationSecurityCon-
ferenceandExposition(DISCEX2000), January
2000.

[37] K. P. Birman,BuildingSecure andReliableNet-
workApplications. Manning,1996.

[38] R. Vitenberg, I. Keidar, G. V. Chockler, and
D. Dolev, “Group communication specifica-
tions: A comprehensive study,” Tech. Rep.
CS0964, Computer Science Department, the
Technion,Haifa, Israel; Tech. Rep. MIT-LCS-
TR-790,MassachusettsInstitute of Technology,
Laboratory for ComputerScience;Tech. Rep.
CS99-31, Institute of ComputerScience,The
Hebrew Universityof Jerusalem.,1999.

26

